659 research outputs found

    Civil Forfeiture: A Higher Form of Commercial Law?

    Get PDF
    In this Article, Messrs. Schwarcz and Rothman analyze the disquieting impact of civil forfeiture law on creditors\u27 rights. The Article begins by describing the historical origins of civil forfeiture and its development into current day law. The Article then explores the tension between forfeiture law and commercial and bankruptcy law by examining the effect of a forfeiture action on unsecured and undersecured creditors. The Article evaluates a recent model for balancing governmental and commercial law interests, and concludes by suggesting reforms to the present civil forfeiture scheme

    Transcriptional and clonal characterization of B cell plasmablast diversity following primary and secondary natural DENV infection

    Get PDF
    Antibody-mediated humoral immunity is thought to play a central role in mediating the immunopathogenesis of acute DENV infection, but limited data are available on the diversity, specificity, and functionality of the antibody response at the molecular level elicited by primary or secondary DENV infection. In order to close this functional gap in our understanding of DENV-specific humoral immunity, we utilized high-throughput single cell RNA sequencing to investigate B cells circulating in both primary and secondary natural DENV infections. We captured full-length paired immunoglobulin receptor sequence data from 9,027 B cells from a total of 6 subjects, including 2,717 plasmablasts. In addition to IgG and IgM class-switched cells, we unexpectedly found a high proportion of the DENV-elicited plasmablasts expressing IgA, principally in individuals with primary DENV infections. These IgA class-switched cells were extensively hypermutated even in individuals with a serologically confirmed primary DENV infection. Utilizing a combination of conventional biochemical assays and high-throughput shotgun mutagenesis, we determined that DENV-reactive IgA classswitched antibodies represent a significant fraction of DENV-reactive Igs generated in response to DENV infection, and that they exhibit a comparable epitope specificity to DENV-reactive IgG antibodies. These results provide insight into the molecular-level diversity of DENV-elicited humoral immunity and identify a heretofore unappreciated IgA plasmablast response to DENV infection

    T lymphocyte responses to flaviviruses — diverse cell populations affect tendency toward protection and disease

    Get PDF
    Dengue virus (DENV), Yellow Fever virus, West Nile virus, Japanese encephalitis virus and Zika virus are medically important flaviviruses transmitted to humans by mosquitoes and circulate in overlapping geographic areas. Cross-reactive immune responses have been demonstrated among the flaviviruses, particularly the four DENV serotypes. The immunological imprint left by a flavivirus infection can therefore have profound effects on the responses to subsequent infections. In this review we summarize recent research focusing on T cell responses to DENV using clinical samples from prospective cohort studies in Asia. These data suggest that durability of different T cell populations after natural infection or vaccination is an important consideration for the outcome of subsequent flavivirus exposures and we argue for continued investigation in the context of longitudinal cohort studies

    Analysis of Cell-Mediated Immune Responses in Support of Dengue Vaccine Development Efforts

    Get PDF
    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed

    A plasmid-based reporter system for live cell imaging of dengue infected cells

    Get PDF
    Cell culture models are used widely to study the effects of dengue virus (DENV) on host cell function. Current methods of identification of cells infected with an unmodified DENV requires fixation and permeablization of cells to allow DENV-specific antibody staining. This method does not permit imaging of viable cells over time. In this report, a plasmid-based reporter was developed to allow non-destructive identification of DENV-infected cells. The plasmid-based reporter was demonstrated to be broadly applicable to the four DENV serotypes, including low-passaged strains, and was specifically cleaved by the viral protease with minimal interference on viral production. This study reveals the potential for this novel reporter system to advance the studies of virus-host interactions during DENV infection

    Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Get PDF
    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication

    Dengue virus downregulates TNFR1- and TLR3-stimulated NF-kB activation by targeting RIPK1

    Get PDF
    Dengue virus (DENV) infection is the most prevalent arthropod-borne virus disease and is endemic in more than 100 countries. Several DENV proteins have been shown to target crucial human host proteins to evade innate immune responses and establish a productive infection. Here we report that the DENV NS3 protein targets RIPK1 (Receptor Interacting Protein Kinase I), a central mediator of inflammation and cell death, and decreases intracellular RIPK1 levels during DENV infection. The interaction of NS3 with RIPK1 results in the inhibition of NF-κB activation in response to TNFR or TLR3 stimulation. Also, we observed that the effects of NS3 on RIPK1 were independent of NS3 protease activity. Our data demonstrate a novel mechanism by which DENV suppresses normal cellular functions to evade host innate immune response
    • …
    corecore